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Abstract. We consider determining the configurational properties of a neutral polymer in two
dimensions (2D) via self-consistent mean-field methods. By suitably scaling the problem we
recover the Flory result for polymers under the excluded volume interaction, i.e.RN ∼ N3/4,
whereRN is the mean scaling length of a polymer which consists of(N + 1) monomers. If
we let x denote the scaled distance from one end of the polymer to a point in space we find
that there exists a pointy∗, where the scaled polymer densityfN(x), decays rapidly to zero.
Physically the existence of such a point is expected since the polymer has a finite length. For
y∗−x > O(N−1/3) we findfN(x) ∼ 1

2x[fN (x)−fN (y∗)]1/2 while for x−y∗ > O(N−1/3) we obtain

fN(x) ∼ o(1). We discuss the consequence of these results on the validity of the asymptotic
methods used.

1. Introduction

The configurational properties of long-chain polymers has been studied extensively by a
variety of theoretical methods for many years. The simplest model of a polymer chain
is that of the random flight chain. This model, however, is only applicable to polymer
systems in the vicinity of theθ temperature [1]. Away from theθ temperature volume
exclusion effects, which prevent any two monomers from occupying the same volume in
space, dominate the configurational properties of the polymer. Determining the principal
quantities of interest, such as the mean end-to-end length of the polymer, denoted byRN ,
or the polymer density at a pointr in space, denoted bynN+1(r), become mathematically
difficult to obtain due to these long-range correlations [2]. (Note that in this work we
consider the polymer to consist of(N + 1) monomers in total.)

Self-consistent mean-field theory, as first introduced by Edwards [3], and later clarified
by Freed and co-workers [2] provides the necessary framework for a quantitative analysis of
these systems. However, Edwards’ mathematical analysis of the excluded volume problem
was criticized because he obtained a Gaussian function for the probability distribution
function for thenth monomer in an infinitely long chain, whereas it is known to be skew-
Gaussian [4, 5]. The cause of this problem can be attributed to factors which Edwards has
neglected when calculating the probability distribution function for thenth monomer, and
have subsequently been shown [6] to be non-negligible. Therefore a re-analysis of mean-
field theory for polymer chains is warranted. Furthermore, recently there has appeared a
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new perturbative method by Shannonet al [7], based on Edwards’ mean-field results, to
obtain corrections to scaling exponents for polymers in 2D.

Consequently, we feel it is important to analyse the problem in 2D. In section 2
we present a mathematical formalism for the problem, while in section 3 we apply this
formalism to the excluded volume problem. We attempt to find a solution that is valid
globally, as opposed to other studies [2, 3]. In section 4 we discuss the results.

2. Formal theory

Let us consider a polymer chain made up of(N+1) monomers. The configurational partition
function for this polymer chain, with the zeroth monomer atR′ and theN th monomer at
R, is thenGN+1(R

′, R) where

GN+1(R
′, R) =

∫
dr1 · · ·

∫
drN−1 e−βW(rN )

N∏
j=1

τ(rj − rj−1) (1)

for N = 2, 3, 4, . . . . We note that the zeroth andN th monomers have not been weighted
since they have been constrained to be atR′ and atR, respectively. The functionτ(r)

accounts for bond connectivity, which we assume has the usual Gaussian bond law form

τ(r) = (3/2πb2) exp(−3r2/2b2) (2)

whereb is the effective bond length. The functionW(rN) plays the role of the mean force
potential and can be written in terms of a pairwise decomposable field [8]8, as

W(rN) =
N−1∑
i=1

8(ri ) . (3)

We impose the initial condition

G2(R
′, R) = τ(R − R′) (4)

indicating for two monomers, only connectivity need be considered. Using equations (1)
and (4) we obtain the recurrence relation

GN+1(R
′, R) =

∫
dr GN(R′, r)e−β8(r)τ (R − r) . (5)

We now define the polymer generating function for chains fromR′ to R as

G(s|R′, R) =
∞∑

N=1

sNGN+1(R
′, R) (6)

so that on substituting equation (5) into (6) and manipulating the result [6] we obtain the
integral equation

G(s|R′, R) = Gf (s||R′ − R|) −
∫

dr F(r)G(s|R′, r)Gf (s||R − r|) (7)

where F(r) = 1 − e−β8(r) and Gf (s||R′ − R|) is known as the free-space polymer
generating function. Using the central limit theorem [9] for Gaussian functions, the free-
space polymer generating function can then be written as

Gf (s|r) = 3

2πb2

∞∑
n=0

exp(−3r2/2b2n)

n
sn . (8)
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Since we are interested in the region of larger, that is r ∼ N1/2b, terms for smalln
in the above sum are negligible compared to terms of O(N). In this case the sum may be
converted to an integral yielding the approximate expression

Gf (s|r) ∼
(

3

πb2

)
K0(κr) (9)

where κ = [(6/b2) log(1/s)]1/2. The functionK0(z) is the modified Bessel function of
zeroth order [10] and has the following properties which we shall use:

K0(z) ∼


log(1/z) as z → 0(
π

2z

)1/2

exp(−z) as z → ∞ .
(10)

The advantage of working with this approximation is that it satisfies the differential equation

(∇2 − κ2)Gf (s|r) = −6

b2
δ(r) (11)

where∇2 is the two-dimensional circular Laplacian operator andδ(r) is the two-dimensional
circular δ-function. Equation (9) is an inaccurate approximation to the exact free-space
generating function forr 6 b. However, equation (11) represents a good approximation in
the region of interest to us, i.e.r � b.

In this study we shall concentrate our efforts on determining the total monomer density
at a pointr in space. Consequently, we definenN+1(r; R′, R) as the mean density of
monomers at the pointr in an ensemble of chains with(N + 1) monomers and with
corresponding partition functionGN+1(R

′, R). This function satisfies the normalization
condition ∫

nN+1(r; R′, R) dr = N − 1 (12)

since the first and last monomers are kept fixed. In terms of the configurational partition
functions we may then write

nN+1(r; R′, R) =
∑N−1

i=1 Gi+1(R
′, r)GN−i+1(r, R)e−β8(r)

GN+1(R
′, R)

(13)

for N = 2, 3, . . . . Defining the monomer density generating function as

D(s|r, R′, R) =
∞∑

N=2

sNnN+1(r; R′, R)GN+1(R
′, R) (14)

and substituting (13) into (14) yields, after some algebra,

D(s|r, R′, R) = G(s|R′, r)G(s|r, R)e−β8(r) . (15)

The mean density is therefore essentially the coefficient ofsN in D(s|r, R′, R). To obtain
G(s|R′, r), etc, we convert the integral equation (7) into a differential equation. This is
done by applying the operator(∇2

R − κ2), with the aid of (11), to yield

[∇2
R − q2(R)]G(s|R′, R) = −6

b2
δ(R − R′) (16)

where

q(R) =
[

6

b2
F(R) + κ2

]1/2

(17)

andG(s|R′, R) is the Green’s function solution of (16).



470 G G Pereira

It is well known that individual polymer chains are elongated in shape. The density and
mean field must model this property. When this is done it is found [6] that the first term we
must solve for, after making an appropriate series expansion, has circular symmetry. Thus
any treatment must necessarily solve for this lowest-order term first, which is our objective
in this paper. Solving for higher-order terms will be pursued in future work. Now consider
the zeroth monomer to be at the origin. Circular symmetry about the origin then implies
8(r) = 8(r) and

nN+1(r) = nN+1(r) =
∫

nN+1(r; 0, R)e−β8(R) dR (18)

where we weight the end monomer, since it is now allowed to be anywhere in space. The
normalization condition, equation (12), now equalsN . In the case of a circularly symmetric
field, the density generating function becomes

D(s|r) = G(s|0, r)G(s|r)e−β8(r) (19)

where

G(s|r) =
∫

G(s|r, R)e−β8(R) dR . (20)

The functionG(s|0, r) satisfies[
d2

dr2
+ 1

r

d

dr
− κ2 − F(r)

]
G(s|r) = −6

b2
δ(r) . (21)

The functionG(s|r, R) does not have circular symmetry, so we write it as

G(s|r, R) = 3

πb2

∞∑
n=0

Gn(s|r, R) cos(nθ) (22)

whereθ is the angle between the end-to-end vector of the polymer and the vectorr. (The
vector r joins the zeroth monomer at the origin to theith monomer atr.) The Gn’s can
then be shown to satisfy[

∂2

∂R2
+ 1

R

∂

∂R
− n2

R2
− κ2 − F(R)

]
Gn(r, R) = 0 for r 6= R (23)

with boundary conditions

∂Gn(r, R)

∂R

∣∣∣∣
R=r+

− ∂Gn(r, R)

∂R

∣∣∣∣
R=r−

= −2

r
(24)

and

Gn(r, R)|R=r+ = Gn(r, R)|R=r− (25)

at r = R. On completing the integral in (20) we find only then = 0 term is required from
(22) and soG(s|r) is just

G(s|r) = 6

b2

∫ ∞

0
e−β8(R)G0(s|r, R)R dR . (26)

Finally, the monomer density is given by

nN+1(r) = [D(s|r)]N
GN+1(0)

(27)



Two-dimensional polymer configuration via mean-field theory 471

where [ ]N denotes the coefficient ofsN of the quantity in the square braces andGN+1(0)

is the coefficient ofsN in G(s|0) where

G(s|0) =
∫

G(s|0, R)e−β8(R) dR . (28)

The coefficients ofsN that are required in (27) can be obtained by using Taylor’s theorem
for complex variables [11, 12, 6].

3. Excluded volume problem

We now apply our formalism to the excluded volume problem in 2D. In the mean-field
treatment of the excluded volume problem [3] we write

F(r) = vnN+1(r) (29)

wherev is the excluded volume parameter and is positive for repulsive interactions.

3.1. Scaling

Since we are concerned in the properties of long-chain polymers, that is in theN → ∞
limit, we initially scale the mean density using the strong scaling hypothesis [13–15]

nN+1(r) = N

2πR2
N

fN(x) (30)

wherefN(x) is an O(1) function of its argument,x = r/RN , andRN is the typical scaling
length for the excluded volume problem. The scaled densityfN(x) then satisfies∫ ∞

0
xfN(x) dx = 1 . (31)

To scale the differential equations forG(s|0, r) andG(s|r, R) we write

log(1/s) = Nvz/2πR2
N (32)

so that (21) becomes

d2G

dx2
+ 1

x

dG

dx
− λ2

N [fN(x) + z]G = −6R2
N

b2
δ(x) (33)

where we identify

λ2
N = 3Nv

πb2
. (34)

One may similarly scale the differential equation forG0, equation (23). (We write
y = R/RN .) When this is done and the scaled density is constructed appropriately we
find

fN(x) = γN

2π i
N −1 6R2

N

Nb2

∫ C+iωN

C−iωN

dz exp

(
N2vz

2πR2
N

)
G(z|x)e−β8(x)

×
∫ ∞

0
e−β8(y)G0(z|x, y)y dy (35)

the normalization constantN , is

N = γN

2π i

∫ C+iωN

C−iωN

dz exp

(
N2vz

2πR2
N

) ∫ ∞

0
e−β8(y)G(z|y)y dy (36)
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where

γN = Nv

2πR2
N

(37)

ωN = 2π2R2
N

Nv
(38)

and C is to the right of all singularities of the integrands. It now remains to determine
the N dependence of the variables we have defined above. To do this we must solve the
differential equations forG(z|x) andG0(z|x, y).

To solve (33) we note that theδ-function on the right-hand side implies that asx → 0
we requireG(z|x) ∼ logx. With this in mind we now solve the equation for non-zerox.
We write

G(z|x) = G(x) = 3

πb2

g(x)

x1/2
(39)

and substituting into (33) we find

d2g

dx2
− λ2

N

[
fN(x) + z − 1

(2λNx)2

]
g = 0 x > 0 . (40)

We assumeλN is a large parameter (which we shall see is valid forN → ∞). Then for
x sufficiently large the 1/(2λNx)2 term in (40) is negligible, and hence the WKB solutions
are

g(x) = exp(±λN

∫ x

0 q(x ′) dx ′)
q1/2(x)

. (41)

Now for x small we shall show thatfN(x) ∼ (2x)−2/3 so that forx < O(λ−3/2) the WKB
methods breakdown [16, 17, 6]. In the region wherex < O(λ−3/2) equation (40) may be
re-written approximately as

d2g

dx2
− λ2

Ng

(2x)2/3
+ g

4x2
= 0 (42)

and has linearly independent solutions

g(x) = p3/4K0(p) and p3/4I0(p) (43)

where p = 3
2λ2−1/3x2/3. The particular solutions are those that satisfy the boundary

conditions asp → 0 and for p large. Forp large the solutions, equation (43), must
match the WKB solutions. When this is done, we find our particular solutions are

G(1)(x) = 3

πb2

3

2
K0(p) → 3

πb2

(
3π

4λ

)1/2 exp(−λN

∫ x

0 q(x ′) dx ′)
x1/2q1/2(x)

(44)

and

G(2)(x) = 3

πb2

3

2

[
K0(p) + π

2
I0(p)

]
→ 3

πb2

(
3π

4λ

)1/2 exp(λN

∫ x

0 q(x ′) dx ′)
2x1/2q1/2(x)

. (45)

Both these solutions are proportional to log(x) as x → 0, as required. Finally, since we
require the solution to be bounded asx → ∞ we only selectG(1)(x).

Now to complete our scaling analysis we consider the normalization constantN given
by (36). (Note, the ensuing argument also applies to (35) for the scaled density.) IfG(y)

is given by (44) we can write

N = γN

2π i

∫ C+iωN

C−iωN

dz exp

(
N2vz

2πR2
N

) ∫ ∞

0

(
3π

4λ

)1/2 exp(−λN

∫ y

0 q(x ′) dx ′)
q1/2(y)

e−β8(y)y1/2 dy .

(46)
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Recall that we are dealing with theN → ∞ limit and so the above integral will be
dominated by the terms exp

(
N2vz/2πR2

N

)
and exp

(−λN

∫ y

0 q(x ′) dx ′). If we are to have
any interaction between these two exponential terms we require

N2v

2πR2
N

= λN =
(

3Nv

πb2

)1/2

(47)

which defines the typical scaling lengthRN as

RN =
(

vb2

12π

)1/4

N3/4 . (48)

Continuing, we findλN ∼ N1/2, ωN ∼ N1/2 and γN ∼ N−1/2. Since λN is a large
parameter (forN → ∞) we are justified in making a WKB solution of (40). Equation (48),
which defines the typical scaling length of the polymer, may be identified as the Flory result
[1] for excluded volume polymers in 2D.

It can be shown that the Boltzmann weighting factor in (46) is, to leading order, just
one. Thus the normalization constantN , defined by (36), after being appropriately scaled
in the N → ∞ limit yields, to leading order,

N = γN

2π i

(
3π

4λ

)1/2 ∫ c+i∞

c−i∞
dz

∫ ∞

0

1

q1/2(y)
eλN [z−∫ y

0 q(x ′) dx ′]y1/2 dy (49)

andc is to the right of all singularities of the integrand.

3.2. Turning point solutions

To complete thez-contour integral in (49) we shall wrap the contour around the negative
real axis. However, before we do this we must be aware of two problems. Firstly, when
analytically continuing the integrand of (49) into the negativez-plane we will encounter the
Stokes phenomenon [16, 17]. Secondly, along the negative real axis the integrand has a
branch cut, with a branch point at the zero ofq2(x). This point is, in fact, a turning point
of (40), so that a WKB solution is invalid in the neighbourhood of this point [16].

To address these problems we re-solve (40) along the upper and lower branches of
the branch cut by writingz = e±iπf (xs). The pointy = xs is the turning point. In the
neighbourhood of the turning point we solve (40) exactly and match the solution into the
WKB solutions, which are valid well away fromxs . In doing this we obtain a solution
which is uniformly valid along the entire negative real axis. We have also circumvented
any problems associated with analytically continuing the integrand of (49) into the negative
z-plane.

When this is done we obtain the solution

g±(y) ∼
(

3π

4λ

)1/2

e−λw1(xs )π1/2[bi(xs, y) ∓ i ai(xs, y)] (50)

where

ai(xs, y) =


(

3
2λw3

)1/6 Ai
[(

3
2λw3

)2/3]
[f (y) − f (xs)]1/4

y 6 xs

(
3
2λw2

)1/6 Ai
[−(

3
2λw2

)2/3]
[f (xs) − f (y)]1/4

y > xs

(51)
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and

bi(xs, y) =


(

3
2λw3

)1/6 Bi
[(

3
2λw3

)2/3]
[f (y) − f (xs)]1/4

y 6 xs

(
3
2λw2

)1/6 Bi
[−(

3
2λw2

)2/3]
[f (xs) − f (y)]1/4

y > xs .

(52)

The functionsw1, w2 andw3 are defined as

w1(xs) =
∫ xs

0
[f (x) − f (xs)]

1/2 dx (53)

w2(xs, y) =
∫ y

xs

[f (xs) − f (x)]1/2 dx (54)

and

w3(y, xs) =
∫ xs

y

[f (x) − f (xs)]
1/2 dx . (55)

The solutions are now written in terms of Airy functions [18], which have an exponential
form for large positive values and a trigonometric form for large negative values. The
normalization constant, valid for all realq2(x), becomes

N = γN

π1/2

(
3π

4λ

)1/2 ∫ ∞

0
d(f (xs)) e−λ[f (xs+w1(xs )]

×
{∫ xs

0
ai(xs, y)y1/2 dy +

∫ ∞

xs

ai(xs, y)y1/2 dy

}
. (56)

The scaled density is now given by

fN(x) = DN(x)

N (57)

whereDN(x) is

DN(x) = λ

2π i
γN

∫ c+i∞

c−i∞
dz eλz

∫ ∞

0

g(x)

x1/2
G0(x, y)y dy . (58)

The two functionsg(x) andG0(x, y) are required to constructDN(x). The functiong(x) has
been determined above, whileG0(x, y) is the Green’s function solution of the scaled version
of (23)–(25), suitably solved along the negative real axis. The solution of (23) is tedious to
obtain and, furthermore, the functionDN(x) which is subsequently formed is particularly
cumbersome. For clarity of presentation we have therefore relegated a discussion of the
solution forG0(x, y) and the construction ofDN(x) to the appendix. In summary we find

fN(x) ∼ I1(x) + I2(x)

N (59)

whereI1(x) andI2(x) are given by (A9) and (A10) andN is given by (56). The important
point to note about theIi integrals is that their structure is quite similar toN , except for a
factor ai(xs, x) bi(xs, x) or ai2(xs, x). Note that there is a factor

(
3π/4λ

)1/2
γN common to

all integrals on the right-hand side of equation (59). This factor will cancel when calculating
fN(x) so we shall dispense with writing it from now on.
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3.3. Integral analysis

The analysis of the integralsN , I1(x) andI2(x) is governed by their largeλ dependence.
As such they may be evaluated using asymptotic techniques [17] to determine their
leading-order behaviour. Consider thefN(xs) integration, which is common to all the
integrals. These integrals are dominated by the behaviour of the exponential term
exp(−λ[f (xs)+w1(xs)]). Sincef (xs)+w1(xs) is positive for allxs > 0, integrals involving
this term are dominated by the values ofxs which minimizef (xs) + w1(xs). Thus let us
defineA(x) to be

A(x) = f (x) + w1(x) = f (x) +
∫ x

0
[f (x ′) − f (x)]1/2 dx ′ . (60)

SincefN(x) represents the scaled density, we assume that it is a monotonically decreasing
function of x. DifferentiatingA(x) we find

d

dx
A(x) = f ′(x)B(x) (61)

where

B(x) = 1 − 1
2

∫ x

0
[f (x ′) − f (x)]−1/2 dx ′ . (62)

Consider the functionB(x). Clearly B(0) = 1 and as the integrand in (62) is positive for
x > 0, B(x) < 1 for x > 0. For x → ∞ the integral in (62) can be shown to become
divergent. ThusB(x) → −∞ as x → ∞. Thus there must exist at least one value of
x for which B(x) is zero. We therefore definey∗ as the point whereB(x) has its first
zero. Sincef ′

N(x) is negative, by assumption,y∗ must correspond to a minimum ofA(x).
Once we have derived the leading-order functional form forfN(x) we shall show that the
above definitions are consistent withfN(x). The above discussion implies that thefN(xs)

integrals are dominated byfN(xs) ∼ fN(y∗).
We now define a change of variables which enables easier handling of the integrals. We

define

ε = f (y) − f (y∗) η′ = f (x ′) − f (y∗) s = f (xs) − f (y∗) . (63)

With this change of variables the normalization constant becomes

N = e−λf (y∗)

π1/2

∫ ∞

−f (y∗)
ds e−λF(s)

{∫ s

∞

dε y1/2(ε)

f ′(y(ε))

(
3
2λ0

)1/6 Ai
[(

3
2λ0

)2/3]
(ε − s)1/4

+
∫ −f (y∗)

s

dε y1/2(ε)

f ′(y(ε))

(
3
2λG

)1/6 Ai
[−(

3
2λG

)2/3]
(s − ε)1/4

}
(64)

where

F(s) = s +
∫ ∞

s

dη′

(−f ′(x(η′)))
(η′ − s)1/2

0(s, ε) =
∫ ε

s

dη′

(−f ′(x(η′)))
(η′ − s)1/2

G(ε, s) =
∫ s

ε

dη′

(−f ′(x(η′)))
(s − η′)1/2

(65)

and we note thatF(s) has its minimum ats = 0, sinceA(xs) has a minimum aty∗.
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For convenience we define

Ig =
∫ s

∞

dε y1/2(ε)

f ′(y(ε))

(
3
2λ0

)1/6 Ai
[(

3
2λ0

)2/3]
(ε − s)1/4

(66)

and

Igg =
∫ −f (y∗)

s

dε y1/2(ε)

f ′(y(ε))

(
3
2λG

)1/6 Ai
[−(

3
2λG

)2/3]
(s − ε)1/4

(67)

corresponding to the integrals in the curly brackets of (64). Now consider theε-integrals,Ig

andIgg. Ig is dominated by the region0 < O(λ−1) while Igg is dominated byG < O(λ−1)

[16, 17, 6]. These regions correspond toy ∼ xs , so that when these integrals are evaluated
we find, to leading order,

N ∼ (y∗)1/2e−λf (y∗)

π1/2[λ(−f ′(y∗))]1/2

∫ ∞

−f (y∗)
ds e−λF(s). (68)

The remainings-integral is dominated by the regions ∼ 0, which corresponds toxs ∼ y∗.
We shall leave thes-integral undone for the moment. (Note, to obtain (68) we have evaluated
all non-exponentials-dependent terms ats = 0.)

Now we consider the integralsI1(x) andI2(x). Due to the close similarity in structure
between these integrals and the normalization constant we may make the change of variables
defined by (63). We also need to defineη = f (x) − f (y∗).

In the appendix (equations (A11) and (A12)) we show the result of this change of
variable on the two integrals. The central point of our asymptotic analysis is that the
functionF(s) has a minimum ats = 0, so that alls-integrals are dominated by this region.
As long as the terminals of thes-integral contain the neighbourhood of the origin they will
be the dominant integrals. With this in mind, it is evident that our problem now reduces to
evaluatingI1(x) andI2(x) in three different zones.

Zone I. This zone corresponds toη positive. For 3λξ/2 > O(1) the Airy functions may be
written down in their large argument (exponential) form. The criterion for validity of this
form can be shown to correspond toη > O(λ−2/3) or y∗ − x > O(λ−2/3). Using a similar
analysis to that already shown for evaluatingN we find the leading-order contribution to
the integrals is

I1(x) + I2(x) ∼ e−λf (y∗)

π1/2x

∫ η

−f (y∗)
ds e−λF(s) 1

2(η − s)1/2

{
Ig + Igg

}
. (69)

The x dependence of the integrals in (69) is contained in the factor 1/2x(η − s)1/2 and
the upper terminal,η, of the s-integral. Except for thisx dependence one may identify
(69) as exactly the same integral that constitutes the normalization constant, equation (64).
This structure is indeed important in solving the problem and shall be used repeatedly. The
term in the curly brackets may be evaluated as before. Noting once again, that since the
minimum of F(s) occurs ats = 0, thes-integral is dominated bys ∼ 0. Forη > O(λ−2/3)

the peak of thes-integral is contained within the range of the terminals and so for purposes
of evaluating thes-integral, we may replace the upper terminalη by infinity. Doing this
we obtain

I1(x) + I2(x) ∼ (y∗)1/2e−λf (y∗)

2xη1/2π1/2[λ(−f ′(y∗))]1/2

∫ ∞

−f (y∗)
ds e−λF(s) . (70)
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Due to the structure of the problem there is no need to complete the remaining integral.
When formingfN(x), as in (59), the leading-order contributions to thes-integrals will
cancel in the numerator and denominator, leaving

fN(x) ∼ 1

2xη1/2
η > 0 . (71)

For η > O(λ−2/3) and positive,fN(x) is an O(1) function as expected.

Zone II. The next zone we consider is in the neighbourhood of the pointη = 0. In this
zone we are not entitled to write down the large argument form of the Airy functions. We
find that the leading-order contributions to the integralsI1(x) andI2(x), for η small, are

I1(x) + I2(x) ∼ π1/2e−λf (y∗)

x

( ∫ η

−f (y∗)
ds e−λF(s)2

(
3
2λξ

)1/3 Ai
[(

3
2λξ

)2/3]
Bi

[(
3
2λξ

)2/3]
(η − s)1/2

+
∫ ∞

η

ds e−λF(s)2
(

3
2λζ

)1/3 Ai
[−(

3
2λζ

)2/3]
Bi

[−(
3
2λζ

)2/3]
(s − η)1/2

){
2Ig + Igg

}
(72)

where

ξ(s, η) =
∫ η

s

dη′

(−f ′(x(η′)))
(η′ − s)1/2

ζ(η, s) =
∫ s

η

dη′

(−f ′(x(η′)))
(s − η′)1/2 .

(73)

Except for the factor of 2, the term (2Ig +Igg) may be identified as the same integrals in
the curly brackets of (64). Let us evaluatefN(x) at the pointy∗. To evaluate the necessary
integrals we may use the same procedure as before. Settingη = 0 in (73) yields

ξ ∼ 2(−s)3/2

3(−f ′(xs))
> 0 s < 0 and ζ ∼ 2s3/2

3(−f ′(xs))
> 0 s > 0 . (74)

The resultings-integral will be dominated by the exponential term e−λF(s) so that alls-
dependent terms may be simply evaluated ats = 0. Doing this yields

I1(y
∗) + I2(y

∗) ∼ 4π1/2e−λf (y∗)

3(y∗)1/2

(
λ

(−f (y∗))

)1/3 Ai(0)Bi(0)

[λ(−f ′(y∗)]1/2

∫ ∞

−f (y∗)
e−λF(s) ds (75)

so that we finally obtain forη = 0

fN(y∗) ∼ 4π

3

Ai(0)Bi(0)

y∗

(
λ

(−f ′(y∗))

)1/3

. (76)

Zone III. This zone corresponds toη negative. For 3λζ/2 > O(1), or |η| > O(λ−2/3), the
Airy functions may be written down in their large argument (trigonometric) form. We then
find, to leading order, that

I1(x) + I2(x) ∼ e−λf (y∗)

π1/2x

∫ ∞

η

ds e−λF(s) cos(λζ + π/4) sin(λζ + π/4)

(s − η)1/2
{Ig + Igg} (77)

and evaluating theIg andIgg integrals, as per usual, yields

I1(x) + I2(x) ∼ e−λf (y∗)

π1/2x

∫ ∞

η

ds e−λF(s) cos(λζ + π/4) sin(λζ + π/4)

(s − η)1/2[λ(−f ′(xs))]1/2
x1/2

s . (78)
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The s-integral we are left with now is somewhat different to what we had before. We
still have the e−λF(s) factor which is dominated bys near zero. The cos and sin functions
oscillate rapidly ats = 0. These oscillations will tend to cancel each other out and thus
diminish the size of the integral [17]. The oscillations die out ats = η but in this region the
exponential term will make the integrand exponentially small. To evaluate the asymptotic
behaviour of this integral explicitly is a complicated exercise.

However, we do not need to evaluate this integral explicitly. We can, in fact, put an
upper bound on it. Since we will eventually compare this integral withN , we find that
fN(x) 6 O(λ−1/2). Hence for|η| > O(λ−2/3) and negative, we find

fN(x) ∼ o(1) . (79)

3.4. Description offN(x)

We have now determined the leading-order functional behaviour offN(x) over the entire
x-range. In zone I, which corresponds toy∗ − x > O(λ−2/3), we have found

fN(x) ∼ 1

2x[fN(x) − fN(y∗)]1/2
. (80)

Close to the originfN(x) � fN(y∗), so that we obtain the result

fN(x) ∼ 1

(2x)2/3
. (81)

Manipulating the functional form (80) yields

xfN(x) ∼ 1

2[fN(x) − fN(y∗)]1/2
. (82)

Integrating both sides with respect tox, from zero toy∗, then implies∫ y∗

0
xfN(x) dx ∼ 1

2

∫ y∗

0

dx

[fN(x) − fN(y∗)]1/2
. (83)

To be strictly correct we should writey∗ − O(λ−2/3) as the upper limit in (83). However,
the error in replacing this withy∗ is at most O(λ−2/3) so that asN → ∞, equation (83)
is correct. Now ifB(y∗) is zero, this implies the right-hand side of the above asymptotic
equation is one. Thus we obtain∫ y∗

0
xfN(x) dx ∼ 1 (84)

which is a normalization condition onfN(x). This condition implies that all the monomers,
to leading order, are contained within a circle of radiusy∗ around the origin. If this
is correct, we should find forx > y∗ that fN(x) is zero. The above normalization
condition is a verification of our result in the regionx > y∗, equation (79). Therefore,
in the neighbourhood ofy∗ there must exist a sharp decay in the scaled densityfN(x).
Correspondingly,f ′

N(y∗) should be large and negative.
The pointy∗ is in the middle of the decay region and so the above discussion implies

fN(y∗) is at most an O(1) number. Equation (76) gives the leading terms forfN(y∗).
Clearly, if f ′

N(y∗) ∼ O(λ), fN(y∗) is an O(1) number as required. The problem will be
completed once we determinef ′

N(y∗), since the two, as yet undetermined, parametersy∗

and fN(y∗) may then be calculated using the normalization condition (84), together with
(76).
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We now verify that the leading-order form offN(x) is consistent with our assumptions
on B(x). For x close to the origin we may use (81) forfN(x). Substituting this into the
definition of B(x) and evaluating the resulting integral yields

B(x) ∼ 1 − βx4/3 (85)

whereβ is a positive constant. Thus, close to the originB(x) is a monotonically decreasing
function of x. Furthermore, one can show that as long asfN(x) is a monotonically
decreasing function,B(x) is also a monotonically decreasing function. Our derived form
for the scaled density implies that all the monomers, to leading order, are contained within a
circle of radiusy∗ around the origin. Thus using (83) we can see that our derived functional
form for fN(x) is consistent with our initial definition thaty∗ is the first zero ofB(x), and
that this zero corresponds to the minimum ofA(x).

Finally, we consider determining the derivative of the scaled density at the pointy∗.
However, before embarking on this complicated exercise we point out that iff ′

N(y∗) ∼
O(λ), as we have alluded to above, this would imply WKB solutions are invalid in the
neighbourhood ofy∗. That is, the higher-order terms in the WKB series that we could
previously neglect are now non-negligible. We have, in fact, evaluatedf ′

N(y∗), by formally
differentiatingI1(x) andI2(x), and have found that the leading-orderλ terms cancel exactly,
giving the resultf ′

N(y∗) ∼ o(λ). Although this result contradicts our earlier description of
fN(x), it is not unexpected in view of the breakdown of WKB theory neary∗. We now
discuss the implications of this result.

4. Discussion

We initially consider the implications of the breakdown in the WKB solution atx = y∗.
Consider the validity of our solutions well away fromy∗. In this region the WKB solution,
as far as thex variable is concerned, is correct. However, the complete solution involves
y, which is integrated over all space. Thusy must pass through the neighbourhood ofy∗.
However, note, to leading order, that the implicity dependence inDN(x) is the same as
they dependence inN . Since we integrate over all space, and ultimately divideDN(x) by
N , any error in not approximatingy properly aty∗ will therefore be cancelled, to leading
order. All that we have to be certain about is that oury integrals are dominated by the
neighbourhood ofy∗.

The WKB solutions fory well away fromy∗ are correct sincefN(x) does not vary
rapidly there. The contribution to the integralsDN(x) and N from these regions were
negligible compared with the contribution fromy neary∗, so that the integrals are, in fact,
dominated by the neighbourhood ofy∗. Thus from this discussion we believe that our
solutions in the region|y∗ − x| > O(λ−2/3) are correct.

Next consider the validity of (76) forfN(y∗). As far as they integration is concerned by
comparing (64) and (72), forN andDN(x), respectively, one can see that the leading-order
y dependence is the same. Thus the arguments we used above concerning the cancellation
of errors in they integrals inDN(x) andN still hold. As far asx is concerned there are
higher-order terms in the WKB series that we should not have neglected. Iff ′

N(y∗) ∼ O(λ)

these higher-order terms are O(1). Since these terms are in the exponent and O(1), they
will only affect the coefficient of [λ/(−f ′

N(y∗)]1/3. ThusfN(y∗) will still be O(1), although
not the same O(1) number that (76) implies.

The same reasoning that we applied tofN(y∗) now applies tof ′
N(y∗). That is, the

higher-order terms in the WKB series are not negligible forx neary∗ and so they affect
the coefficient ofλ. Thus although our analysis implies the coefficient ofλ is zero we
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believe proper consideration of the higher-order terms in the WKB series would rectify this
inconsistency.

This discussion is merely meant to give a qualitative reasoning for the inconsistency in
our solutions. To remedy the WKB solutions in the neighbourhood ofy∗ we must solve
(40) exactly in the decay region. The exact Green’s function solution must be matched into
the WKB solutions which are valid well away fromy∗ in a manner analogous to the method
we used to obtain our solutions in the regionx < O(λ−3/2) (see equations (42)–(45)) and to
the turning point analysis. We have attempted to do this under the assumption thatfN(x)

is given by

fN(x) ∼ fN(y∗) + O(λ)(y∗ − x) (86)

in the decay region. However, matching the Green’s function solutions into the regions
well away fromy∗ is not possible. It becomes apparent that one must give a more complete
description of the functionality offN(x) in this region, i.e. howfN(x) behaves near the
boundaries of the decay region. Assuming a more complex form forfN(x), however, makes
it difficult to obtain an exact solution of (40) in the decay region. Nevertheless, it is felt,
if such a solution can be found, a complete self-consistent solution of the excluded volume
problem is possible.

5. Conclusions

In this study we have used a self-consistent mean-field method to determine the
configurational properties of long-chain polymers under the excluded volume interaction.
The formalism that we have presented is, in fact, quite general so that it may be extended
to three dimensions and to more general interactions.

Using a scaling argument, we verify the Flory result for excluded volume polymers in
2D, i.e.RN ∼ N3/4. We have found that the asymptotics of the problem are dominated by
the neighbourhood of the turning point. By obtaining a uniformly valid Green’s function
solution to the differential equations we are able to show that there exists a pointy∗, where
y∗ is an O(1) number, in the neighbourhood of which the polymer density decays rapidly.
We believe the rate of decay is O(λ). This result causes the Green’s function solutions to
be incorrect in the neighbourhood ofy∗. In spite of this, we believe, due to the structure of
the problem, that our solutions for|y∗ − x| > O(λ−2/3) (equations (79) and (80)) are still
valid. This is based on the fact that any Green’s function solution must necessarily match
with the WKB solutions well away fromy∗. To obtain a complete self-consistent solution
for the problem we require to solve the differential equations exactly in the neighbourhood
of y∗. Although this is a difficult task we are currently pursuing this objective.
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Appendix

In this appendix we consider obtaining the functionG0(x, y) and construct the function
DN(x). To obtain G0(x, y) we must solve the scaled versions of (23)–(25) along the
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negative real axis. To do this we writeG0(x, y) = g0(x, y)/y1/2 and hence solve the
following equations forg0(x, y):

∂2g0

∂y2
+ 1

y

∂g0

∂y
− λ2

[
f (y) + e±iπf (xs) − 1

(2λy)2

]
g0 = 0 y 6= x (A1)

subject to the boundary conditions:

∂g0

∂y

∣∣∣∣
y=x+

− ∂g0

∂y

∣∣∣∣
y=x−

= −2

x1/2
(A2)

and

g0|y=x+ = g0|y=x− (A3)

along the upper and lower branches of the branch cut. The general solution is given by

g0,±(x, y) = A±(x)ai(xs, y) + B±(x)bi(xs, y) (A4)

for y < x, and

g0,±(x, y) = C±(x)ai(xs, y) + D±(x)bi(xs, y) (A5)

for y > x. We have four arbitrary complex constants to determine while, at the moment, we
only have two boundary conditions so that another two are required. These two conditions
are given by (i) insisting that asy → ∞, for fixed x, that g0,±(x, y) has the samey
dependence asg±(y) and (ii) imposing the reversibility property of Green’s functions which
implies limy→0(g0,±(x, y)/y1/2) = g±(x)/x1/2. To obtain the boundary conditions asy → 0
we must make use of both solutionsG(1)(x) andG(2)(x) given by (44) and (45). Solving
for all four boundary conditions then gives the particular solutions forg0,±(x, y) along the
upper and lower branches:

g0,±(x, y) ∼ π

λx1/2
[bi(xs, x) ∓ i ai(xs, x)][ai(xs, y) − e−2λw1(bi(xs, y) ∓ i ai(xs, y))] (A6)

for y < x, and

g0,±(x, y) ∼ π

λx1/2
[bi(xs, y) ∓ i ai(xs, y)][ai(xs, x) − e−2λw1(bi(xs, x) ∓ i ai(xs, x))] (A7)

for y > x. We can see that this function is symmetric inx andy as required for a Green’s
function.

To constructDN(x) defined by (58) we follow the same procedure as outlined to
constructN . The functiong±(x) is given in (50).DN(x) is formed by multiplyingg+(x)

and g0,+(x, y) on the upper branch and multiplyingg−(x) and g0,−(x, y) on the lower
branch and then taking the integral of their difference. When this is done we find the
resulting dominant terms inDN(x) are given by

DN(x) ∼ I1(x) + I2(x) (A8)

where

I1(x) = π1/2γN

x

(
3π

4λ

)1/2

×
{∫ f (x)

0
d(f (xs)) e−λ[w1+f (xs )]2ai(xs, x)bi(xs, x)

∫ x

0
ai(xs, y)y1/2 dy

+
∫ ∞

f (x)

d(f (xs)) e−λ[w1+f (xs )]2ai(xs, x)bi(xs, x)

∫ xs

0
ai(xs, y)y1/2 dy

+
∫ ∞

f (x)

d(f (xs)) e−λ[w1+f (xs )]2ai(xs, x)bi(xs, x)

∫ x

xs

ai(xs, y)y1/2 dy

}
(A9)



482 G G Pereira

and

I2(x) = π1/2γN

x

(
3π

4λ

)1/2

×
{∫ f (x)

0
d(f (xs)) e−λ[w1+f (xs )]ai(xs, x)bi(xs, x)

∫ xs

x

ai(xs, y)y1/2 dy

+
∫ f (x)

0
d(f (xs)) e−λ[w1+f (xs )]ai(xs, x)bi(xs, x)

∫ ∞

xs

ai(xs, y)y1/2 dy

+
∫ ∞

f (x)

d(f (xs)) e−λ[w1+f (xs )]ai(xs, x)bi(xs, x)

∫ ∞

x

ai(xs, y)y1/2 dy

+
∫ f (x)

0
d(f (xs)) e−λ[w1+f (xs )]ai2(xs, x)

∫ xs

x

bi(xs, y)y1/2 dy

+
∫ f (x)

0
d(f (xs)) e−λ[w1+f (xs )]ai2(xs, x)

∫ ∞

xs

bi(xs, y)y1/2 dy

+
∫ ∞

f (x)

d(f (xs)) e−λ[w1+f (xs )]ai2(xs, x)

∫ ∞

x

bi(xs, y)y1/2 dy

}
. (A10)

Finally, we make the change of variables defined by (63) and byη = f (x) − f (y∗) on
these integrals. We then find

I1(x) = π1/2e−λf (y∗)

x

{∫ η

−f (y∗)
ds e−λF(s)2

(
3
2λξ

)1/3 Ai
[(

3
2λξ

)2/3]
Bi

[(
3
2λξ

)2/3]
(η − s)1/2

×
∫ η

∞

dε y1/2(ε)

f ′(y(ε))

(
3
2λ0

)1/6 Ai
(

3
2λ0

)2/3
]

(ε − s)1/4

+
∫ ∞

η

ds e−λF(s)2
(

3
2λζ

)1/3 Ai
[−(

3
2λζ

)2/3]
Bi

[−(
3
2λζ

)2/3]
(s − η)1/2

×
∫ s

∞

dε y1/2(ε)

f ′(y(ε))

(
3
2λ0

)1/6 Ai
[(

3
2λ0

)2/3]
(ε − s)1/4

+
∫ ∞

η

ds e−λF(s)2
(

3
2λζ

)1/3 Ai
[−(

3
2λζ

)2/3]
Bi

[−(
3
2λζ

)2/3]
(s − η)1/2

×
∫ η

s

dε y1/2(ε)

f ′(y(ε))

(
3
2λG

)1/6 Ai
[−(

3
2λG

)2/3]
(s − ε)1/4

}
(A11)

and

I2(x) = π1/2e−λf (y∗)

x

{∫ η

−f (y∗)
ds e−λF(s)

(
3
2λξ

)1/3 Ai
[(

3
2λξ

)2/3]
Bi

[(
3
2λξ

)2/3]
(η − s)1/2

×
∫ s

η

dε y1/2(ε)

f ′(y(ε))

(
3
2λ0

)1/6 Ai
[(

3
2λ0

)2/3]
(ε − s)1/4

+
∫ η

−f (y∗)
ds e−λF(s)

(
3
2λξ

)1/3 Ai
[(

3
2λξ

)2/3]
Bi

[(
3
2λξ

)2/3]
(η − s)1/2

×
∫ −f (y∗)

s

dε y1/2(ε)

f ′(y(ε))

(
3
2λG

)1/6 Ai
[−(

3
2λG

)2/3]
(s − ε)1/4
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+
∫ ∞

η

ds e−λF(s)
(

3
2λζ

)1/3 Ai
[−(

3
2λζ

)2/3]
Bi

[−(
3
2λζ

)2/3]
(s − η)1/2

×
∫ −f (y∗)

η

dε y1/2(ε)

f ′(y(ε))

(
3
2λG

)1/6 Ai
[−(

3
2λG

)2/3]
(s − ε)1/4

+
∫ η

−f (y∗)
ds e−λF(s)

(
3
2λξ

)1/3 Ai 2
[(

3
2λξ

)2/3]
(η − s)1/2

×
∫ s

η

dε y1/2(ε)

f ′(y(ε))

(
3
2λ0

)1/6 Bi
[(

3
2λ0

)2/3]
(ε − s)1/4

+
∫ η

−f (y∗)
ds e−λF(s)

(
3
2λξ

)1/3 Ai 2
[(

3
2λξ

)2/3]
(η − s)1/2

×
∫ −f (y∗)

s

dε y1/2(ε)

f ′(y(ε))

(
3
2λG)1/6 Bi

[−(
3
2λG

)2/3]
(s − ε)1/4

+
∫ ∞

η

ds e−λF(s)
(

3
2λξ

)1/3 Ai 2
[(

3
2λξ

)2/3]
(η − s)1/2

×
∫ −f (y∗)

η

dε y1/2(ε)

f ′(y(ε))

(
3
2λG

)1/6 Bi
[−(

3
2λG

)2/3]
(s − ε)1/4

}
. (A12)
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